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Abstract

We continue the study of cellular-compact spaces and the larger class of cellular-countably-
compact spaces. We give a number of sufficient conditions involving local bases and local
m-bases in order that a cellular-countably-compact space be countably compact and some
conditions which imply that a topology is maximal with respect to being cellular-countably-
compact are obtained. We also consider the compact productivity of the previously mentioned
properties and give a characterization of those spaces whose product with a compact space
is almost cellular-countably-compact.
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1 Introduction, notation and terminology

Throughout the paper, all spaces are assumed to be Hausdorff and whenever a stronger
separation axiom is needed, it will be specified. If P is a topological property, then a space X
is said to be cellular-P (respectively, almost cellular-P) if whenever U is a family of mutually
disjoint non-empty open sets (such a family will be called a cellular family of open sets), there
is a subspace with property P which meets every element (respectively [U/|-many elements)
of the family /.
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The class of cellular-Lindelof spaces, which was first introduced by Bella and Spadaro in
[8], contains both the class of Lindeldf spaces and that of ccc spaces. and has recently been
studied by a number of authors, for example see [9, 11, 23-25].

More generally, the cardinal function cellularity, c¢(X), and cellular families have fre-
quently been employed to obtain interesting cardinal inequalities; we mention some recent
articles on this theme. In [7], a generalization of the well-known inequality |X| < 2¢(0x(X)
was given and related inequalities concerning spaces with a -base whose elements have
compact closure were recently obtained in [6]. In [9], it was shown that a monotonically nor-
mal cellular-Lindelof space is Lindelof, and a cardinality bound for cellular-Lindelof spaces
with a regular Gs-diagonal was given. In [19], the class of star-cellular-Lindeldf spaces is
studied and it was shown that every first countable, star-cellular-Lindelof, perfect 7>-space
has cardinality at most ¢, giving a partial answer to Question 4 of [8].

Recently, interest in cellular-compactness has arisen; this property was first introduced in
[21] and further studied in [2]; the broader class of almost cellular-compact spaces was intro-
duced in [4]. An Isbell-Mrowka W-space is easily seen to be almost cellular-compact but not
cellular-compact, nor cellular-countably-compact. This latter property was first introduced
and studied in [2] where among other results it was shown that a Urysohn, first countable,
cellular-countably-compact space is countably compact and the question was asked whether
this result extends to the class of all first countable spaces. In Sect. 2, of this paper we give
a strong positive answer to this question and also show that a Tychonoff cellular-countably-
compact space with a Gs-diagonal is compact and metrizable; this result corrects an error in
the proof of Proposition 5.16 of [2].

In Sect. 3 we study maximality of the property of being cellular-countably-compact. This
topic was briefly studied in [2] where it was shown that a sequential, cellular-countably-
compact space with a disjoint local -base at each point is maximal cellular-countably-
compact. Among other results in this section, we show that the existence of a disjoint local
7 -base at each point characterizes maximality of this property in the class of regular sequential
spaces. As a corollary, it follows that consistently, every compact, sequential space is maximal
cellular-countably-compact.

In Sect.4, we consider the problem of preservation of the properties of being almost
cellular-compact and almost cellular-countably-compact under products, another topic very
briefly touched on in [2]. In that paper, it was shown in Theorem 5.4 that neither the property of
being cellular-compact nor that of being cellular-countably-compact are preserved, in general,
under products with compact spaces. However, it is not known whether such products must
at least be almost cellular-compact or almost cellular-countably-compact, respectively. In a
series of results in this section, we give a number of sufficient conditions for the product of
an almost cellular-compact space and a compact space to be almost cellular-compact, but the
general problem remains open.

If D is a discrete subspace of a space X, then an open expansion of D is a cellular family
U = {Uy : d € D} of open sets such that d € Uy for each d € D. A discrete subspace D
of a topological space X is strongly discrete if it has an open expansion. An easy to prove
folklore result states that in a 73-space every infinite subspace contains an infinite strongly
discrete subset, but this is not necessarily true in a Hausdorff space. The notation we use and
almost all undefined terms are taken from [12], but the definitions of a local r-base and the
cardinal functions cellularity, c(X), and extent, e(X), can be found in [15].
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2 When is a cellular-countably-compact space, countably compact?

Definition 2.1 Following [16] we say that a subset A of a topological space X is fluffy if
there is a cellular family of open sets {U, : a € A} such thata € cl(U,) for eacha € A.

It was shown in [16] that in a Hausdorff space, each infinite subset contains an infinite
fluffy subset. Question 5.13 of [2] asked whether a first countable cellular-countably-compact
space must be countably compact. We answer this question affirmatively in a strong way in
the next theorem which has a conclusion similar to that of Theorem 2.7 of [16], but whose
hypothesis is strictly weaker, in the class of all 73-spaces, than that used in [16]. The result
is also a considerable strengthening of Corollary 4.2 of [21].

A space has countable closed-pseudocharacter if each of its points is the intersection of
a countable subfamily of its closed neighbourhoods. A point p with this property was called
an Ep-point in [5] and later in [18].

Theorem2.2 If X is a cellular-countably-compact space with countable closed-
pseudocharacter, then X is regular, first countable and countably compact.

Proof Supposefirstthatx € X isanon-isolated pointand U is an open set such thatx € cl(U).
Let {V, : n € o} be a nested family of open neighbourhoods of x such that (\{cl(V,) : n €
w} = {x}. For each n € w, there is some m, > n such that (V, N U)\(cl(V},,) NU) # @ for
otherwise, for some k € w and all m > k, cl(V,,) N U 2 V; N U and then,

)= el(V) im >k} 2 [ Wl(Vu)NU :m >k} 2 Vi NU

which would imply that x is an isolated point of cl(U) and hence an isolated point of X. Let
Wo = (Vo N U)\(cl(Viny) NU) and for each n € w, we define recursively

Wit1 = (Vip, N UN(CL(Vi,, ) N U).

The sets {W,, : n € w} are disjoint non-empty open sets contained in U and W,y C
Vi, € Vy. Furthermore, since X is cellular-countably-compact, there is some countably
compact subspace C € X such that C N W, # @ for each n € w. Thus for each n € w, we
may pick ¢, € CN W, andlet D = {¢, : n € w}. The set D is discrete and since cl¢ (D)
is countably compact, D must have an accumulation point p € X. Moreover, if p # x, then
there is some £ € w such that p ¢ cl(V,,,) and since all but finitely many of the sets W,, are
contained in Vy, this contradicts the fact that p is an accumulation point of D. Thus we have
shown that any countably compact subspace of X which meets each element of the family
{W, : n € w} must contain the point x.

We now show that every infinite discrete subset A = {a, : n € w} € X has an accu-
mulation point. There is some infinite fluffy subset £ C A and mutually disjoint open sets
{U, : e € E} suchthate € cl(U,) for each e € E; without loss of generality, we assume that
if e is isolated, then U, = {e}. As in the previous paragraph, for each e € E we may find a
family W, of mutually disjoint open sets such that | J W, C U,. Then 20 = [ J{W, : e € E}
is a family of mutually disjoint open sets and hence there is some countably compact sub-
space Y € X which meets each element of 2 and hence contains E. Thus E, and hence A,
has an accumulation point.

To show that X is a T3-space suppose that there is some point p € X and an open
neighbourhood V of p which contains no closed neighbourhood of p. Let {W, : n € w}
be a countable nested family of open sets such that ({cl(W,) : n € w} = {p}. Clearly
cl(W,)\V is infinite for each n € w and so we may pick distinct points x,, € cl(W,)\V. A
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straightforward argument now shows that the infinite set {x, : n € w} has no accumulation
point, contradicting the fact that X is countably compact.

Finally, using an argument similar to that of the previous paragraph one can show that a
feebly compact regular space with countable pseudocharacter is first countable. A proof of
this fact can be found in the proof of (b) in Theorem 4 of [13]. ]

We note that in the statement of the previous theorem it is not possible to substi-
tute an almost cellular-countable-compact space for a cellular-countably-compact space;
as mentioned in Sect. 1, an Isbell-Mrowka W-space is easily seen to be almost cellular-
countably-compact but not cellular-countably-compact (and hence not countably compact).

The previous theorem should be compared to Theorem 2.7 of [16], where a different
hypothesis (that the closure of every countable strongly discrete subspace is countably com-
pact) is employed to obtain the same conclusion. As a consequence we have the following
corollary:

Corollary 2.3 If X is a space with countable closed-pseudocharacter then the following are
equivalent:

(1) X is regular, first countable and countably compact;
(2) The closure of every strongly discrete countable subset of X is countably compact, and
(3) X is cellular-countably-compact.

The next corollary is an immediate consequence of Theorem 2.2 and Theorem 4.13 of [21],
where it was shown that a first countable, cellular-compact, regular space has cardinality at
most ¢. This result was first proved in [16] and should be compared with that of Theorem 2.10
below.

Corollary 2.4 If X is a cellular-compact space with countable closed-pseudocharacter, then
| X| <c

The conditions (2) and (3) in Corollary 2.3 are not equivalent, even in the class of regular
radial spaces as we illustrate below. However, if X is an infinite Urysohn space then (as shown
in [14]) every infinite subset of X contains an infinite strongly discrete subspace and hence
condition (2) in the previous corollary immediately implies that X is countably compact - that
istosay (2) = (3) inthe class of Urysohn (and hence in the class of regular) spaces. However,
a Fréchet, cellular-countably-compact Tychonoft space need not be countably compact and
hence need not satisfy (2). In the next example, we recall the properties of a space which
appears in a slightly different context in Example 3.24 of [21].

Example 2.5 Let X denote the X-product in {0, 1}*! whose base pointis 0, the function which
is identically 0. It is well known and easy to see that ¥ is countably compact and it follows
from Theorem 2.1 of [17] that ¥ is Fréchet. Let X = X\{0}; clearly X is not countably
compact, but we will show that X is cellular-compact, hence cellular-countably-compact.

It follows from Theorem 3.13 of [21], that it is sufficient to show that ¥ has no disjoint
local -base at 0. Since ¥ is dense in {0, 1}! it follows that ¢(Z) = w, and so to prove our
claim, we need only show that there is no countable disjoint local r-base in X at the point
0. To this end, suppose that i = {U, : n € w} is a cellular family of basic open sets in X,
say U, = i, ana]l : @ € I,} N E where ayq € {0, 1} and I, € w; is finite for each
n € w;thus I = [ J{I, : n € w} is countable and if y € w;\1, then the open neighbourhood
T, 1[0]N = of 0 € =, contains no element of the family U. O

In case the space has a disjoint local 7 -base at each point, we are able to prove a positive
result. Recall from [14] that a space X is strongly Hausdorff if each infinite subset of X
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contains an infinite strongly discrete subset; a Urysohn space (and hence a regular space)
is strongly Hausdorff. A space X is Whyburn (respectively, weakly Whyburn) if whenever
A C X and x € cl(A)\A, there is B C A such that cl(B)\ A = {x} (respectively, whenever
A is not closed, there is B C A such that [cl(B)\A| = 1).

Theorem 2.6 A strongly Hausdorff, cellular-countably-compact, Whyburn space X which
has a disjoint local w-base at each point is countably compact and Fréchet.

Proof Suppose that D = {d,, : n € w} is a countable discrete subset of X; it suffices to show
that D is not closed and since X is strongly Hausdorff, we may assume that D is strongly
discrete. Thus we may find an open expansion {U, : n € w} of D and for eachn € w, a
disjoint local w-base P, = {Vyn : o € I,} at d,,. If d,, is an isolated point of X then we
assume that U, = {d,} and P, = {{d,,}} and without loss of generality, we may assume that
U Pn C U, for each n € w. The family of open sets C = | J{P, : n € w} is cellular and so
there is a countably compact subspace C C X which meets each element of C, that is to say
C meets each set V,,,, for all n € w and @ € I,,. We may then choose x4, € V,, N C for all
n € wandall @ € I,;; foreachn € w, the set {xy, : a € I,,} is discrete and since P, is a local
m-base at dy, it follows that d,, € cl({xq, : @ € I,}) for each n € w. Since X is Whyburn,
there is a subset A, C {x4, : @ € I} € C such that cl(A,)\{xon : @ € I} = {d,} and
so dj, is the only accumulation point of A,, implying that d, € C for all n € w. Since C is
countably compact, it follows immediately that D is not closed. That X is also Fréchet, now
follows from Theorem 2.2 of [22] where it was proved that a Whyburn countably compact
space is Fréchet. O

Corollary 2.7 A strongly Hausdorff, cellular-countably-compact, Whyburn space with a
dense set of isolated points is Fréchet and countably compact.

The conditions imposed in Theorem 2.6 seem rather strong, but the following examples
illustrate the difficulties involved in trying to weaken them.

Example 2.8 The Tychonoff Plank 7 = ((w; +1) X (w+ 1))\ {(w1, )} is a weakly Whyburn
space which has a disjoint local 7 -base at each point; T is cellular-countably-compact since
it has a dense countably compact subspace, but 7" is not countably compact. (]

Example 2.9 Let Z be the countably compact subspace of Sw of cardinality ¢ constructed in
Example 3.10.19 of [12], ® € Z C Bw; we will show that there exists an infinite discrete
subset D C Bw\ Z which has no accumulation pointin Z. It will then follow that as a subspace
of Bw, X = ZUD is acellular-countably-compact Tychonoff space with a countable, disjoint,
local w-base at each point, which is not countably compact.

Let f be a (necessarily) continuous surjection from w onto a countable dense subspace
of {0, 1}€ and let g be its continuous and (necessarily) surjective extension to Sw.

Note first that each point of {0, 1}€ is the limit of an injective sequence in {0, 1}°. Since
lg[Z]] < ¢ < |{0, 1}|, we may choose a point g(p) € {0, 1}°\g[Z] and an injective sequence
(g(xy)) in {0, 1}*\{g(p)} which converges to g(p), (where {x, : n € w} U {p} C Bw). Let

D = {x, : n € w}; we claim that D has no accumulation point in Z and hence that
X = Z U D is not countably compact. For if ¢ € Bw were an accumulation point of D, then
since (g(x,)) — g(p) it would follow that g(¢) = g(p), showing thatg ¢ Z U D. O

A space X is said to have a Gs-diagonal (respectively, a regular Gs-diagonal) if the
diagonal A = {(x,x) : x € X} € X x X is the intersection of countably many of its
neighbourhoods (respectively, closed neighbourhoods); a space with a regular Gs-diagonal
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clearly has countable closed-pseudocharacter. A statement very similar to that of the next
theorem first appeared in [2], but the proof given there contained and employed the false
statement that a pseudocompact space with a Gs-diagonal is compact and metrizable. The
statement of the next result should be compared to that of Corollary 2.4.

Theorem 2.10 A cellular-countably-compact space X with a regular G s-diagonal is compact
and metrizable, and hence has cardinality at most .

Proof Since the space X has a regular Gs-diagonal, it follows that X has countable closed-
pseudocharacter and then by Theorem 2.2, X is a first countable, countably compact, 73-space
which has a Gs-diagonal. A result of J. Chaber (see [10]) now implies that X is compact and
metrizable. O

Question 2.11 Are the conditions (2) and (3) of Corollary 2.3 equivalent in the class of
all spaces with countable pseudocharacter (respectively, in the class of all spaces with a
Gs-diagonal)?

Definition 2.12 The diagonal A of a space X is small if for any set A € (X x X)\A of
cardinality w; there exists a set B C A such that |B| = w; and cl(B) N A = 0.

It is well-known and not hard to see that a Gs-diagonal is small. The following questions
then arise:

Question 2.13 Is a cellular-countably-compact (T3-) space with a G s-diagonal (respectively,
a small diagonal), countably compact?

However, an almost cellular-countably-compact Tychonoff space with a Gs-diagonal need
not even be cellular-countably-compact; the requisite example is again an Isbell-Mrowka W-
space which, being strongly o -discrete (thatis to say, the space is the union of countably-many
closed discrete subspaces), has a G s-diagonal.

3 Maximal cellular-countably-compact spaces

We say that a space (X, t) is maximal cellular-countably-compact (respectively, maximal
almost cellular-countably-compact) if it is cellular-countably-compact, but whenever o 2 ,
then (X, o) is not cellular-countably-compact (respectively, not almost cellular-countably-
compact). It is far from clear that a cellular-countably-compact topology on a set X can be
enlarged to a maximal cellular-countably-compact topology, the space Bw being a case in
point as we will show later. However, by imposing conditions on a cellular-countably-compact
space X similar to those of Theorems 2.2 and 2.6, maximal cellular-countably-compact
topologies can be shown to exist. This topic was mentioned briefly in [2] and previously,
several characterizations of maximal feebly compact spaces were obtained in [18] where
however, all spaces were only assumed to be 7} and not necessarily Hausdorff. One such
characterization given in Proposition 2.7 of [18] used a property similar to, but strictly weaker
than countable closed-pseudocharacter.

Theorem 3.1 If (X, 1) is a cellular-countably-compact Hausdorff space with countable
closed-pseudocharacter, then (X, t) is maximal cellular-countably-compact.

Proof 1t follows from Theorem 2.2 that (X, ) is a first countable countably compact 73-
space. Then Corollary 2 of [5] implies that such a space is maximal countably compact.
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Since any topology ¢ on X stronger than t also has countable closed-pseudocharacter, then
by the same argument, it follows that if (X, o) is cellular-countably-compact, it is countably
compact. As a consequence, 0 = t, which shows that (X, 7) is maximal cellular-countably-
compact. O

The next result should be compared with Theorem 5.17 of [2], where it was shown that
a sequential cellular-countably-compact space with a disjoint local rr-base at each point is
maximal cellular-countably-compact.

Theorem 3.2 If (X, t) is a Whyburn, strongly Hausdorff, cellular-countably-compact space
with a disjoint local it -base at each point, then (X, t) is maximal cellular-countably-compact.

Proof Tt follows from Theorem 2.6 that (X, t) is countably compact and Fréchet. Suppose
that o is a topology on X which is strictly stronger than 7. Since (X, t) is Fréchet, there
is some injective sequence (x,) which converges in X to a point p in (X, t) which is not
in the range S of (x,), and which has no accumulation point in (X, o), and hence, S is an
infinite, closed and discrete subset of the space (X, o). Let & be the topology on X generated
by the sub-base t U {X\S}; note thatif p ¢ U € &, then U € 7. Itis clear that (X, &) is not
countably compact and we proceed to show that it is Whyburn. Since 7 and & differ only at p,
to show that (X, &) is Whyburn we need only show that if p € cls (A)\ A, then there is some
B C A such that clg (B)\A = {p}. However, if p € clz(A), then since p ¢ cls(ANS) it
follows that p € clg (A\S). But then, since t and £ coincide on X\S and (X, t) is Whyburn,
it follows that there is some B € A\S such that cls (B)\A = cl; (B)\A = {p}.

To show that (X, o) is not cellular-countably-compact, it clearly suffices to show that
(X, &) is not cellular-countably-compact. Thus we assume to the contrary, that (X, &) is
cellular-countably-compact and proceed to show that this produces a contradiction. Since
S U {p} is a compact subspace of (X, t), a standard argument shows that S has a T-open
expansion W such that p ¢ | JW. Thus W = {U,, : n € w}is acellular family of £-open sets
suchthatx, € U, and p ¢ U, foreachn € w.Inthe space (X, ) we may find a disjoint local
w-base V), at each of the points x, in (X, ) such that x,, ¢ |V, and |V, C U, for each
n € w. Since S is §-closed, it follows immediately that ( J{V, : n € w} is a disjoint local 7 -
base at p in the space (X, &). Thus the space (X, &) satisfies the hypotheses of Theorem 2.6,
and so by that theorem, (X, &) would be countably compact, a contradiction O

The conditions imposed in the two previous theorems might appear strong, but it seems
they cannot be relaxed significantly: It is easy to show that none of the spaces exhibited
in Examples 2.5, 2.8 and 2.9 are maximal cellular-countably-compact. However, there are
maximal cellular-countably-compact spaces with disjoint local 7 -bases at each point which
are not Whyburn and do not have countable closed-pseudocharacter. The one-point com-
pactification of an Isbell-Mrowka space is a sequential, compact space with a dense set of
isolated points which is easily seen to be both maximal countably compact and maximal
cellular-countably-compact. However, in the class of regular spaces, the condition of having
a disjoint local 7-base at each point is necessary in order that a space be maximal cellular-
countably-compact. We need the following lemma whose proof, which we omit, is almost
identical to that of Proposition 3.11 of [21].

Lemma 3.3 If X is a regular cellular-countably-compact space and there exists p € X such
that there is no disjoint local m-base at p, then X\{p} is cellular-countably-compact

Theorem 3.4 If (X, 1) is a regular, maximal cellular-countably-compact space then X has
a disjoint local w-base at each point.
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Proof 1If there is some point p which does not have a disjoint local r-base, then p is not an
isolated point of X and it follows from the previous lemma that the space (X, o), where o is
the topology generated by the subbase T U {{ p}}, is cellular-countably-compact. O

Corollary 3.5 A sequential, cellular-countably-compact, regular space is maximal cellular-
countably-compact if and only if it has a disjoint local 7w-base at each point.

Proof The sufficiency is Theorem 5.17 of [2] while the necessity follows from the previous
theorem. O

Note that the one-point compactification of an Isbell-Mrowka W-space shows that a
scattered maximal cellular-countably-compact space need not be Fréchet.

Corollary 3.6 (2% < 2®') Each sequential, compact space is maximal cellular-countably-
compact.

Proof This follows immediately from Corollary 3.23 of [21] and the previous corollary. O

The next theorem is analogous to Lemma 3.26 of [20], but the proof differs somewhat.
The result will allow us to show that many cellular-countably-compact topologies cannot be
refined to a maximal cellular-countably-compact topology.

Theorem 3.7 If (X, 1) is a cellular-countably-compact space and there exists a maximal
cellular-countably-compact topology o 2 t, then each point of X which is not the limit of
an injective sequence in (X, t), is an isolated point of (X, o).

Proof Suppose that p € X is not an isolated point of (X, o); it follows that the space
(X\{p}, o) is not cellular-countably-compact, for if it were, then the topological union
of (X\{p}, o) with the one-point discrete space {p}, would produce a cellular-countably-
compact topology & on X strictly stronger than o. Thus there is a cellular family V of
non-empty open subsets of (X\{p}, o) with the property that no countably compact sub-
space of (X\{p}, o) meets each element of V. However, since each element of V is open in
(X, 0), there is a countably compact subspace C of (X, o) which meets each element of V;
it follows that p € C and C\{p} is not countably compact. Thus there is some countably
infinite subset S of C\{p} whose only accumulation point is p. Clearly then, S is a sequence
which converges to p in (X, o) and hence also in (X, 7). ]

Corollary 3.8 There is no maximal cellular-countably-compact topology which refines that
of the Tychonoff Plank or that of Bw.

Problem 3.9 Characterize those spaces which are maximal cellular-countably-compact.

The last theorem of this section shows that even first countability is not sufficient in
general, to imply that a topology is maximal almost cellular-countably-compact.

Theorem 3.10 If (X, t) is an almost cellular-countably-compact, first countable space
without isolated points and c(X) = w, then (X, t) is not maximal almost cellular-countably-
compact.

Proof Suppose that o is a topology on X and o O 7. There is some p € X and an injective
sequence S = {x, : n € w} € X\{p} which converges to p in (X, t) but which is closed and
discrete in (X, o) and then as in Theorem 3.2, denote by £ the topology on X generated by the
sub-base T U { X\ S}. To show that (X, 7) is not maximal almost cellular-countably-compact,
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we will show that (X, &) is almost cellular-countably-compact. To this end, suppose that that
U = {U, : n € w}is a cellular family of non-empty open sets in (X, &). Without loss of
generality we may assume that for eachn € w, p ¢ U,.

If p is not an accumulation point of ¢/ in (X, &), then there is an open &-neighbourhood
W of p such that for all but finitely-many n € w, U, € X\W. Then V = int;(cl;(W)) is an
open t-neighbourhood of p which meets only finitely-many elements of ¢/. There is then a
countably compact subspace C of (X, t) which meets infinitely-many of those elements of
U disjoint from V and since t and & coincide on X\V, it follows that C\V is a countably
compact subspace of (X, &) which meets infinitely many elements of the cellular family /.

If, on the other hand, p is an accumulation point of U/, then let {V,, : n € w} be a nested
local base at p in (X, 7). For each n € w, we may find m, € w such that U,,, NV, # 0,
where we assume that m, 1 > m,. Since S is nowhere dense in (X, §), we may choose
Yn € (Un,\S) N V,. The subspace {y, : n € w} U {p} of (X, &) is compact and has
non-empty intersection with infinitely many elements of /. O

Corollary 3.11 The Euclidean topology on [0, 1] is not maximal almost cellular-countably-
compact.

We do not know if there exists a maximal almost cellular-countably-compact topology on
[0, 1] which refines the Euclidean topology.

4 Almost cellular-compactness of products

A space X is said to be linearly H-closed if every ascending open cover of X has a dense
element. Such a space is necessarily feebly compact, but need not be countably compact -
again an Isbell-Mrowka W-space illustrates this fact. In Theorem 2.11 of [3], it was shown
that a space is linearly H-closed if and only if every cellular family of regular cardinality of
non-empty open sets has a complete accumulation point. It is then natural to ask whether or
not in a linearly H-closed space, every infinite cellular family of non-empty open sets has a
complete accumulation point. The next result is a partial answer to this question in the class
of countably compact spaces.

Theorem 4.1 If X is a countably compact, linearly H-closed space, then every cellular family
of size less than X, of non-empty open sets has a complete accumulation point.

Proof Suppose that Y = {U, : o < «} is a cellular family of non-empty open sets where
k < R, . If k is a regular cardinal, then since X is linearly H-closed, it follows immediately
that ¢/ has a complete accumulation point. If on the other hand « is singular, then cof (k) = @
and hence we may find a countable set of regular cardinals {A, : n € w} whose supremum is
k.Foreachn € w,let Vo = {Uy : @ < Ao} and V41 = {Uy : Ay < @ < Apy1}). Since for
each n € w, V), is a cellular family of regular cardinality of non-empty open sets, it follows
that each such family V), has a complete accumulation point p, € X.Let P = {p, : n € w};
there are now two cases to consider.

(1) If P is infinite, then since X is countably compact, P has an accumulation point ¢ € X
and hence every neighbourhood W of ¢ is such that W contains infinitely many points pj,
say {pn, : k € o} € W and hence meets A, -many elements of V for infinitely many k € w.
The result now follows from the fact that ) ;. An, = k.

(2) If P is finite, say P = {p1, ..., pn}, then there is some j € w such that p; is a complete
accumulation point of the family U4, for infinitely many n € w. An argument similar to that
of case (1) now shows that p; is a complete accumulation point of the family /. O
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Corollary 4.2 If X is a locally compact, countably compact space and c¢(X) < R, then X
is linearly H-closed if and only if X is almost cellular-compact.

Proof Using the notation of the previous theorem, if K is a compact neighbourhood of the
complete accumulation point of the cellular family of non-empty open sets I/, then K meets
|/|-many elements of U{. ]

We omit the proof of the following theorem which is almost identical to a combination of
the proofs of Proposition 5.14 and Theorem 5.15 of [4].

Theorem4.3 Let Q be a topological property (the relevant one here being countable
compactness); the following are equivalent for each Hausdorff space X :

(1) For each family U = {U,, : @ € «} of non-empty open subsets of X, there is a subspace
A C X with property Q which meets k-many elements of U.

(2) For each cardinal k and every k-sequence S = (Uy)qex Of non-empty open subsets of X
there is a subspace A C X with property Q which meets k-many terms of the sequence
S.

Furthermore, if Q is a property which is preserved under continuous images and products
with compact spaces, then the above conditions are equivalent to:

(3) The space X x K is almost cellular-Q for each compact space K.

Using the same method and the fact that the product of two countably compact spaces,
one of which is a k-space, is countably compact (for example see Theorem 3.10.13 in [12]),
we have the following two results.

Theorem 4.4 Suppose that X is a space in which for every family U of non-empty open sets
there is a countably compact subspace of X meeting |U|-many elements of U. Then X x L
is almost cellular-countably-compact whenever L is a countably compact k-space.

The next result generalizes Corollary 5.15 of [2].

Theorem4.5 If X is a cellular-countably-compact space with countable closed-
pseudocharacter and Y is a countably compact space, then X x Y is countably compact.

Proof Tt follows from Theorem 2.2 that X is countably compact and first countable, hence a
k-space. As in the previous theorem, X x Y is countably compact. O

It is an immediate consequence of Theorem 5.4 of [2], that if the product of a cellular-
compact space X such that 7w (X) = w, with w 4 1 is cellular-compact, then the space X is
compact. Furthermore, it follows from Theorem 3.13 and Example 3.21 of [21] that if p is a
remote point of SR, then SR\ { p} is cellular-compact. It follows that (BR\{p}) x (w+1) is not
cellular-compact. In a contemporary article [11], whose primary purpose was the construction
of a counterexample to Theorem 3.12 of [24], another example is given of a cellular-compact
space SQ\{p} (where p is a remote point of Q) and a compact space whose product is
not cellular-compact (their independently obtained proof is essentially a combination of
the results cited in the previous paragraph). The question (first raised in [4]) then arises as
to whether the product of a compact space and an almost cellular-compact (respectively,
almost cellular-countably-compact) space, is almost cellular-compact (respectively, almost
cellular-countably-compact). The following result is a partial answer in the case of almost
cellular-compactness.

@ Springer



When is a cellular-countably. . . Page110f12 163

Theorem 4.6 Suppose that X is a locally compact, almost cellular-compact T -space and K
is a compact Tr-space such that c(X x K) < R, then X x K is almost cellular-compact.

Proof By Theorem 5.6 of [4], X is linearly H-closed and hence by Theorem 4.1 of [3], X x K
is also linearly H-closed. Since ¢(X x K) < 8, and X x K is locally compact, it is then a
consequence of Corollary 4.2 that X is almost cellular-compact. O

Corollary 4.7 Suppose that p is a remote point of R; the space Z = (BR\{p}) x (w + 1) is
almost cellular-compact (but not cellular-compact).

In what follows, A (k) denotes the one-point compactificaction of the discrete space of size
« and o(X) is the cardinality of the topology of X. The proof of the next result is analogous
to that of Theorem 3.5 of [1] but for completeness we give a proof.

Theorem 4.8 For a Hausdorff space X, X x K is almost cellular-compact (respectively,
almost cellular-countably-compact) for each compact Hausdorff space K if and only if
X x A(k) is almost cellular-compact (respectively, almost cellular-countably-compact) for
each infinite cardinal k < o(X).

Proof The proofs of the two results are identical and we consider only the case of almost
cellular-compactness; furthermore, the necessity is obvious. To prove the sufficiency, suppose
that K is a compact space and that W = {U, x V, : o € k} is a set of mutually disjoint
non-empty basic open sets in X x K; then (Uy)qer 1S @ sequence of open sets in X. We
consider the space X x A(k), and set W = {Ug x {8} : B € «}. Clearly, W is a cellular
family of open sets in X x A(x) and so there is a compact subspace C € X x A(k) which
meets k-many elements of W. It follows that wx(C] is a compact subspace of X which
meets k-many terms of the sequence of sets (Uy )qex in X. But then wx[C] x K is a compact
subspace of X x K which meets k-many elements of W.

Now suppose that o(X) = « and that there is some compact space K such that X x K is not
almost cellular-compact. Then, again by Theorem 4.3, there is some familyd = {U, : @ € A}
of non-empty open sets in X with the property that no compact subspace meets A-many
elements of I/ and clearly, A = |U/| < o(X). Consider the space X x A()) and the cellular
family of open sets V = {Uy, x {a} : o € A}. If there were to exist a compact subspace
T € X x A(}) which meets A-many elements of V), then the compact space wx[7T] would
meet A-many elements of ¢/, which would be a contradiction. O

The final result of the section is then an immediate consequence of Theorems 4.6 and 4.8.

Corollary 4.9 Suppose that X is a locally compact, almost cellular-compact Tr-space such
that o(X) < R, and K is a compact Ty-space, then X x K is almost cellular-compact.
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